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Abstract

Animacy detection is a problem whose solu-
tion has been shown to be beneficial for a
number of syntactic and semantic tasks. We
present a state-of-the-art system for this task
which uses a number of simple classifiers
with heterogeneous data sources in a voting
scheme. We show how this framework can
give us direct insight into the behavior of the
system, allowing us to more easily diagnose
sources of error.

1 Introduction

Animacy detection has proven useful for a va-
riety of syntactic and semantic tasks, such as
anaphora and coreference resolution (Orǎsan and
Evans, 2007; Lee et al., 2013), verb argument dis-
ambiguation (Dell’Orletta et al., 2005) and depen-
dency parsing (Øvrelid and Nivre, 2007). Existing
approaches for animacy detection typically rely on
two types of information: linguistic databases, and
syntactic cues observed from the corpus. They usu-
ally combine two types of approaches: rule based
systems, and machine learning techniques. In this
paper we explore a slightly different angle: we wish
to design an animacy detector whose decisions are
interpretable and correctable, so that downstream
semantic modeling systems can revisit those deci-
sions as needed. Thus here, we avoid defining
a large number of features and then using a ma-
chine learning method such as boosted trees, since
such methods, although powerful, result in hard-to-
interpret systems. Instead, we explore combining
interpretable voting models using machine learning
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only to reweight their votes. We show that such
an approach can indeed result in a high perform-
ing system, with animacy detection accuracies in the
mid 90% range, which compares well with other re-
ported rates. Ensemble methods are well known (see
for example, Dietterich (2000)) but our focus here is
on using them for interpretability while still main-
taining accuracy.

2 Previous Work

2.1 Definitions of Animacy

Previous work uses several different definitions of
animacy. Orǎsan and Evans (2007) define animacy
in the service of anaphora resolution: an NP is con-
sidered animate “if its referent can also be referred
to using one of the pronouns he, she, him, her, his,
hers, himself, herself, or a combination of such pro-
nouns (e.g. his/her )”. Although useful for the task
at hand, this has counterintuitive consequences: for
example, baby may be considered animate or inan-
imate, and ant is considered inanimate (Ibid., Fig-
ure 1). Others have argued that animacy should be
captured by a hierarchy or by categories (Aissen,
2003; Silverstein, 1986). For instance, Zaenen et
al. (2004) propose three levels of animacy (human,
other animate and inanimate), which cover ten cat-
egories of noun phrases, with categories like ORG
(organization), ANIM (animal) and MAC (intelli-
gent machines such as robots) categorised as other
animate. Bowman and Chopra (2012) report results
for animacy defined both this way and with the cat-
egories collapsed to a binary (animate, inanimate)
definition.
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2.2 Methods for Animacy Detection

Evans and Orǎsan (2000) propose a rule-based sys-
tem based on the WordNet taxonomy (Fellbaum,
1998). Each synset is ascribed a binary animacy
label based on its unique beginner. A given noun
is then associated with the fraction of its animate
synsets (where all synsets are taken to be animate
or inanimate) and one minus that fraction, similarly
for a given verb. Animacy is then ascribed by ap-
plying a series of rules imposing thresholds on those
fractions, together with rules (and a gazetteer) to de-
tect names and acronyms, and a rule triggered by the
occurrence of who, or reflexives, in the NP. In later
work, Orǎsan and Evans (2007) extend the algorithm
by propagating animacy labels in the WordNet graph
using a chi-squared test, and then apply a k-nearest
neighbor classifier based on four lexical features. In
their work, the only context used was the animacy of
the verb in the NP, for heads of subject NPs (e.g., the
subject of eat is typically animate). Øvrelid (2009)
and Bowman and Chopra (2012) extend this idea by
using dependency relations to generate features for
their classifier, enabled by corpora created by Zae-
nen et al. (2004). In another approach, Ji and Lin
(2009) apply a simple “relative-pronoun” pattern to
the Google n-gram corpus (Brants and Franz, 2006)
to assign animacy (see the List model in Section 5
for details). Although the animacy decision is again
context-independent, such a list provides a strong
baseline and thus benefit applications like anaphora
resolution (Lee et al., 2013).

3 The Task

We adopt a definition of animacy closest to the bi-
nary version in Bowman and Chopra (2012): we
define an entity to be animate if it is alive and has
the ability to move under its own will. We adopt
this simple definition because it fits well with the
common meaning and is therefore less error prone,
both in terms of incorporation into higher level mod-
els, and for labeling (Orǎsan and Evans (2007) re-
port that the labeling of animacy tuned for anaphora
proved challenging for the judges). We also ap-
ply the label to single noun tokens where possible:
the only exceptions are compound names (“Sarah
Jones”) which are treated as single units. Thus,
for example, “puppy food” is treated as two words,

with puppy animate and food inanimate. A more
complete definition would extend this to all noun
phrases, so that puppy food as a unit would be inan-
imate, a notion we plan to revisit in future work.
Note that even this simple definition presents chal-
lenges, so that a binary label must be applied de-
pending on the predominant meaning. In “A plate
of chicken,” chicken is treated as inanimate since it
refers to food. In “Caruso (1873-1921) is consid-
ered one of the world’s best opera singers. He...,”
although at the time of writing clearly Caruso was
not alive, the token is still treated as animate here
because the subsequent writing refers to a live per-
son.

4 The Data

We used the MC160 dataset, which is a subset of the
MCTest dataset and which is composed of 160 grade
level reading comprehension stories generated using
crowd sourcing (Richardson et al., 2013). Workers
were asked to write a short story (typically less than
300 words) with a target audience of 5 to 7 year
olds. The available vocabulary was limited to ap-
proximately 8000 words, to model the reading abil-
ity of a first or second grader. We labeled this data
for animacy using the definition given above. The
first 100 of the 160 stories were used as the training
set, and the remaining 60 were used for the test set.
These animacy labels will be made available on the
web site for MCTest (Richardson et al., 2013).

5 The Models

Since one of our key goals is interpretability we
chose to use an ensemble of simple voting models.
Each model is able to vote for the categories Ani-
mal, Person, Inanimate, or to abstain. The distinc-
tion between Animal and Person is only used when
we combine votes, where Animal and Person votes
appear as distinct inputs for the final voting combi-
nation model. Some voters do not distinguish be-
tween Person and Animal, and vote for Animate or
Inanimate. Our models are:

List: The n-gram list method from (Ji and Lin,
2009). Here, the frequencies with which the rela-
tive pronouns who, where, when, and which occur
are considered. Any noun followed most frequently
by who is classified as Animate, and any other noun
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in the list is classified as Inanimate. This voter ab-
stains when the noun is not present in the list.

Anaphora Design: The WordNet-based approach
of Evans and Orǎsan (2000).

WordNet: A simple approach using WordNet.
This voter chooses Animal or Person if the unique
beginner of the first synset of the noun is either of
these, and Inanimate otherwise.

WordSim: This voter uses the contextual vector
space model of Yih and Qazvinian (2012) computed
using Wikipedia and LA Times data. It uses short
lists of hand-chosen signal words for the categories
Animal, Person, and Inanimate to produce a “re-
sponse” of the word to each category. This response
is equal to the maximum cosine similarity in the vec-
tor space of the query word to any signal word in the
category. The final vote goes to the category with
the highest response.

Name: We used an in-house named entity tagger.
This voter can recognize some inanimate entities
such as cities, but does not distinguish between peo-
ple and animals, and so can only vote Animate, Inan-
imate or Abstain.

Dictionaries: We use three different dictionary
sources (Simple English Wiktionary, Full English
Wiktionary, and the definitions found in Word-
Net) with a recursive dictionary crawling algorithm.
First, we fetch the first definition of the query and
use a dependency tree and simple heuristics to find
the head noun of the definition, ignoring qualifica-
tion NPs like “piece” or “member.” If this noun
belongs to a list of per-category signal words, the
voter stops and votes for that category. Otherwise,
the voter recursively runs on the found head noun.
To prevent cycling, if no prediction is made after 10
recursive lookups, the voter abstains.

Transfer: For each story, we first process each
sentence and detect instances of the patterns x
am/is/was/are/were y and y named x. In each of
these cases, we use majority vote of the remaining
voters to predict the animacy of y and transfer
its vote to x, applying this label (as a vote) to all
instances of x in the text.

The WordSim and Dictionaries voters share lists
of signal words, which were chosen early in the ex-
perimental process using the training set. The sig-
nal words for the Animal category were animal and
mammal1. Person contains person and people. Fi-
nally, Inanimate uses thing, object, space, place,
symbol, food, structure, sound, measure, and unit.

We considered two methods for combining vot-
ers: majority voting (where the reliable Name voter
overrides the others if it does not abstain) and a lin-
ear reweighting of votes. In the reweighting method,
a feature vector is formed from the votes. Except
for WordSim, this vector is an indicator vector of
the vote – either Animal, Person, Animate (if the
voter doesn’t distinguish between animals and peo-
ple), Inanimate, or Abstain.

For Dictionaries, the vector’s non-zero compo-
nent is multiplied by the number of remaining al-
lowed recursive calls that can be performed, plus one
(so that a success on the final lookup gives a 1). For
example, if the third lookup finds a signal word and
chooses Animal, then the component corresponding
to Animal will have a value of 9.

For WordSim, instead of an indicator vector, the
responses to each category are used, or an indica-
tor for abstain if the model does not contain the
word. If the word is in the model, a second vec-
tor is appended containing the ratio of the maximum
response to the second-largest response in the com-
ponent for the maximum response category. These
per-voter feature vectors are concatenated to form a
35 dimensional vector, and a linear SVM is trained
to obtain the weights for combining the votes.

6 Results

We used the POS tagger in MSR SPLAT (Quirk et
al., 2012) to extract nouns from the stories in the
MC160 dataset and used these as labeled examples
for the SVM. This resulted in 5,120 extracted nouns
in the 100 training stories and 3,009 in the 60 test
stories. We use five-fold cross-validation on the
training set to select the SVM parameters. 57.2%
of the training examples were inanimate, as were
58.1% of the test examples.

Table 1 gives the test accuracy of each voter. List

1This was found to work well given typical dictionary defi-
nitions despite the fact that people are also mammals.
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List Anaphora WNet WSim Dict Name
84.6 77.1 78.8 57.6 74.3 16.0

Table 1: Accuracy of various individual voters on the test
set. Abstentions are counted as errors. Note that Transfer
depends on a secondary source for classification, and is
therefore not listed here.

Majority SVM
N+WN+D+WS+AD+L 87.7 95.0
N+WN+WS 80.1 95.0
N+WN+D+WS+AD+L+T 87.4 95.0
N+WN+D+WS 86.4 94.8
N+WN+WS+AD+L 86.5 94.7
N+WN+D+WS+T 86.8 94.0
N+WN+D 86.1 93.7
N+WN 89.3 93.0
N+D 82.6 93.0
N+AD 87.6 89.4
N+L 85.4 88.9

Table 2: Accuracy of various combinations of voters
among Name (N), Anaphora Design (AD), List (L),
WordNet (WN), WordSim (WS), Dictionary (D), and
Transfer (T) under majority voting and SVM schemes.
Bold indicates a statistically significant difference over
the next lower bolded entry with p < 0.01, for the SVM.

comes out on top when taken alone, but we see in
later results that it is less critical when used with
other voters. Name performs poorly on its own, but
later we will see that it is a very accurate voter which
frequently abstains.

Table 2 gives the test performance of various com-
binations of voters, both under majority vote and
reweighting. Statistical significance was tested us-
ing a paired t-test, and bold indicates a method
was significant over the next lower bold line with
p value p < 0.01. We see a very large gain from
the SVM reweighting: 14.9 points in the case of
Name+WordNet+WordSim.

In Table 3, we show the results of ablation exper-
iments on the voters. We see that the most valuable
sources of information are WordSim and Dictionar-
ies.

Finally, in Table 4, we show a breakdown of
which voters cause the most errors, for the majority
vote system. In this table, we considered only “fi-
nal errors,” i.e. errors that the entire system makes.
Over all such errors, we counted the number of times

Majority SVM
WordSim 87.6 93.7
SimpleWikt (dict) 87.3 94.1
FullWikt (dict) 86.4 94.3
Dict 87.4 94.5
Name 86.6 94.7
List 86.4 94.8
WordNet (dict) 88.7 94.8
WordNet 87.5 94.9
Anaphora Design 88.6 94.9
Transfer 87.7 95.0

Table 3: Test accuracy when leaving out various voters,
using both majority vote and and reweighting. Bold indi-
cates statistical significance over the next lower bold line
with p < 0.01.

each voter chose incorrectly, giving a count of how
many times each voter contributed to a final error.
We see that the Anaphora Design system has the
largest number of errors on both train and test sets.
After this, WordNet, List, and WordNet (dict) are also
large sources of error. On the other hand, Name and
WordSim have very few errors, indicating high re-
liability. The table also gives the number of criti-
cal errors, where the voter selected the wrong cate-
gory and was a deciding vote (that is, when chang-
ing its vote would have resulted in a correct overall
classification). We see a similar pattern here, with
Anaphora Design causing the most errors and Word-
Sim and Name among the most reliable. We included
Anaphora Design even though it uses a different def-
inition of animacy, to determine if its vote was nev-
ertheless valuable.

Error tables such as these show how voting mod-
els are more interpretable and therefore correctable
compared to more complex learned models. The ta-
bles indicate the largest sources of error and sug-
gest changes that could be made to increase accu-
racy. For example, we could make significant gains
by improving WordNet, WordNet (dictionary), or
List, whereas there is relatively little reason to ad-
just WordSim or Name.

7 Conclusions

We have shown that linear combinations of voting
models can give animacy detection rates in the mid
90% range. This is well above the accuracy found
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Errors Critical
Train Test Train Test

Anaphora Design 555 266 117 76
WordNet 480 228 50 45
List 435 195 94 45
Transfer 410 237 54 58
WordNet (dict) 385 194 84 65
SimpleWikt (dict) 175 111 39 16
FullWikt (dict) 158 67 1 5
WordSim 107 89 11 19
Name 71 55 27 19

Table 4: Errors column: number of errors on train and
test where a source voted incorrectly, and was thus at
least in part responsible for an error of the overall sys-
tem. Critical column: number of errors on train and test
where a source voted incorrectly, and in addition cast a
deciding vote. Results are for majority vote.

by using the n-gram method of (Ji and Lin, 2009),
which is used as an animacy detection component
in other systems. In this sense the work presented
here improves upon the state of the art, but there are
caveats, since other workers define animacy differ-
ently and so a direct comparison with their work is
not possible. Our method has the added advantage
of interpretability, which we believe will be useful
when using it as a component in a larger system.
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